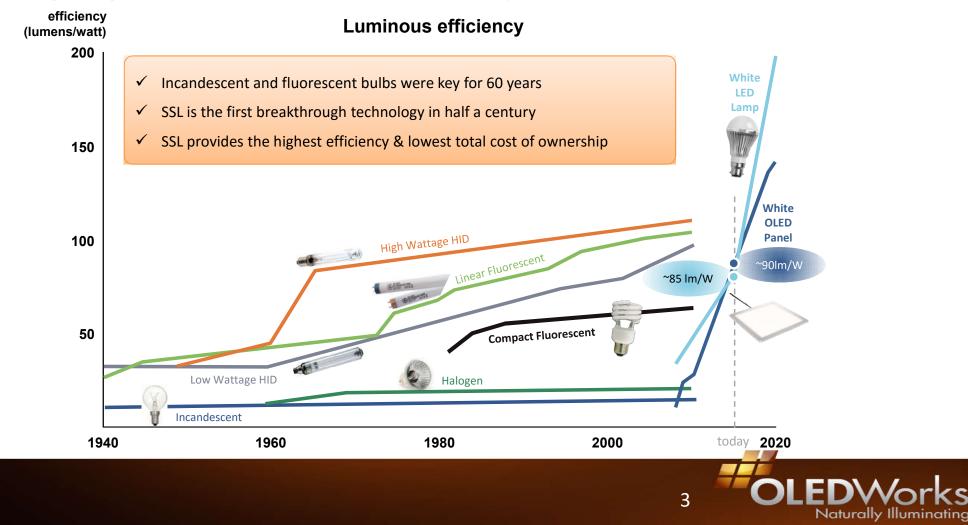
Flexible OLEDs on Corning[®] Willow[®] Glass

Michael Boroson¹, Tim Spencer¹, Scott McClurg¹, Jeff Spindler¹, Joerg Knipping², Manfred Ruske², Dipak Chowdhury³, Rachid Gafsi³, KJ Woo³, and BK Kong³ March 1, 2016

¹OLEDWorks LLC ²OLEDWorks GmbH ³Corning

OLEDWorks.com


Outline

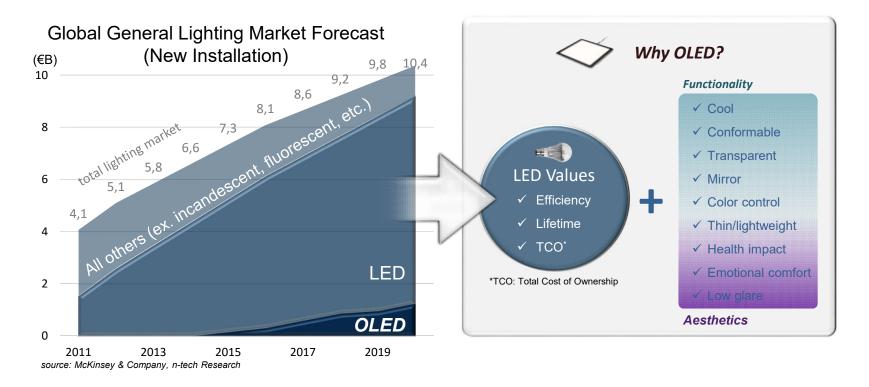
- OLED lighting value proposition
- Challenges in building flexible OLED panels
 - Review of state of technology
 - OLEDWorks/Corning approach
- OLEDWorks Panel
 - Status
 - Flexible integrated substrate value
- Summary

OLED Lighting Value Proposition

Technology adoption is driven by efficiency and operating cost in lighting; white LED is the forerunner today

OLED Lighting Value Proposition

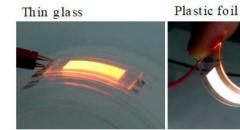
Next generation lighting will be driven by integration, light quality, and function


	<i>Today</i> Bulb/luminaire replacement	<i>Future</i> Lighting integrated with other functionalities
Value Drivers	 ✓ Cost & performance \$/klm Im/W Color temperature (K) 	 Added aesthetics & functionalities Lighting without light bulbs Overall operating expense New user productivity/experience
Light Sources Quality	 ✓ Replace existing bulb ✓ Maintain form factors 	 Light quality: CRI>90 Low glare Integration with fixture Integration into walls, furniture, shelving
Integration Controls	 ✓ Simple controls • On/off • Dimmability 	 ✓ Building controls integration ✓ Sensor-based control ✓ Wireless controls using Zigbee and Bluetooth
Function	✓ Lumens only	 ✓ Health benefits ✓ Location services ✓ Data communication

4

OLED Lighting Value Proposition

LEDs are expected to prevail in the lighting market; With cost reduction, OLEDs will also become popular



Review of state of technology

- Multiple options for flexible OLEDs
- Which problems to solve?
- Balance cost and performance

FUTURE OLED LIGHTING WILL BE FLEXIBLE

- What means "FLEXIBLE OLED"?
- folded? wrapped? rolled? twisted? "crumpled/creased"? curvable? bendable? conformable?
- with neglible effect on its electronic function

page 9

© Fraunhofer FEP

- consensus : use of flexible substrate
- Different applications ask for different types of "Flexibility"!
- 1-dimensional, 1.5-dimensional, 2-dimensional curvature

Flexible Substrate for OLED

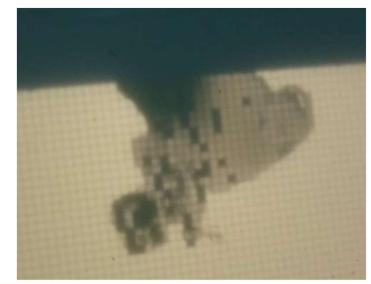
KONICA MINOLTA

	Plastic	Metal Foil	Thin Glass
Suitability for R2R process	0	×	×
Surface smoothness	0	×	0
Flexibility	0	0	×
Heat resistance	×	0	0
Barrier property	×	0	0
Remark (Key Points)	-good property for R2R process and flexibility -high performance barrier film is required -poor property for high temperature process	 possibility of bent and broken in R2R process flattening layer is required transparent OLED can not be made 	-good property for barrier -possibility of broken in R2R process -OLED panel can be easily broken

6

Takatoshi Tsujimura, OLEDs World Summit, 10/27/2015


Christian May, OLEDs World Summit, 10/28/2015


Fraunhofer

C. May - OLEDs World Summit 2015

Challenges in building flexible OLED panels Review of state of technology

- Barrier-coated plastic substrates, under development by several organizations (Fraunhofer, Holst, Konica-Minolta, Sumitomo, Vitriflex, etc.)
- Konica-Minolta: R2R mass production plant has started
- LG Chem: Plastic-based OLED light panel samples are available at very high price

7

Review of state of technology

- Thin Glass OLEDs
- LG Chem introduced in 2013, but apparently no longer selling
- Fraunhofer demonstrated in 2015, but identified challenges with reliable low resistance electrical contacting

ming Soon

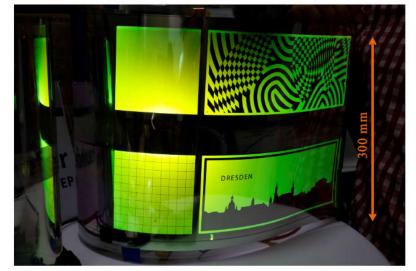
ULG Chen

$LG \, Chem \, OLEDs - Bendable \, W\text{-}OLEDs$

Bendable OLED lighting panel will be available in the 2nd half of this year

Color Lon

- 200mm x 50mm, thin glass
- 4,000K, 45lm/W


Product

Slimits e Minum		
		* Con
lexible & Transparer	nt Panels	
5 Chem had almady developed of exhibited filexible OLED purels Light – Building in 2012, and will usis-produced flexible OLED anels in 2013. Flexible, bendable, ageebile – wherever your call it, were in no doubt that these panels if an observation context state to context.	breakthrough for OLEDs. The flexible panels will open doors to unprecodented design freedom by being shapeable on curved jurfaces. US Chem's flexible panels are ultra-thin at Outma, and super-lightweight at 0 sprams.	contribute to additional swings for applications, weight such as electric or airplanes, and submarin In addition, LG Chern wi producing panels that a transparent, yet another characteristic unique to

http://www.lgchem.com/lgchemoled/LGOLED_02_03_03.jsp

R2R OLEDS ON FLEXIBLE GLASS - RESULTS

R2R TCO electrode and OLED process on 50 μm UTG, PET laminated Challenging: Reliable electrical contact with low contact resistance for large area illumination

8

page 14

© Fraunhofer FEP C. May – OLEDs World Summit 2015

Fraunhofer

J Moon et al., 2013 Society for Information Displays

Christian May, OLEDs World Summit, 10/28/2015

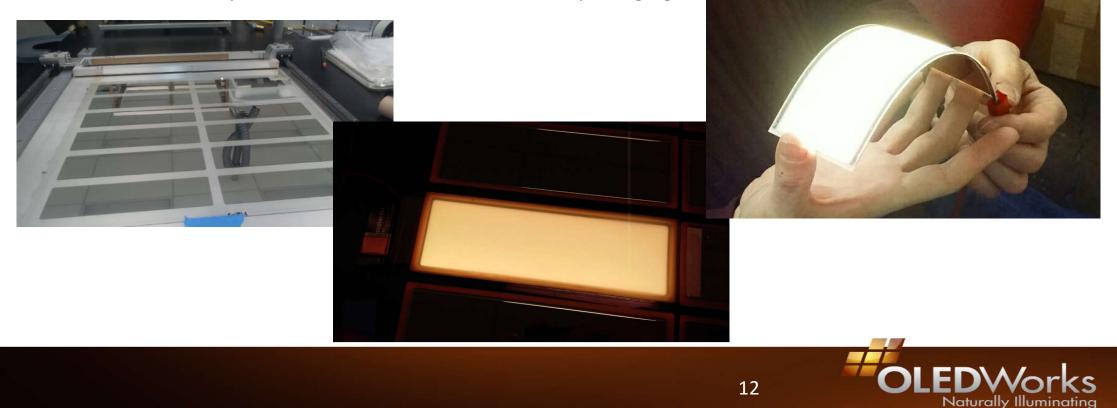
Challenges in building flexible OLED panels OLEDWorks/Corning approach

- Glass is established low cost substrate for OLED lighting
- Cost is the major inhibitor to OLED lighting adoption
- "Bendable" is significant and sufficient improvement over no curvature
- Sheet processing is sufficient for initial OLED lighting volumes. R2R processing capability will help drive down cost at high volume.
- Flexible glass OLEDs require improvements in glass properties and in flexible encapsulation and electrical contacting

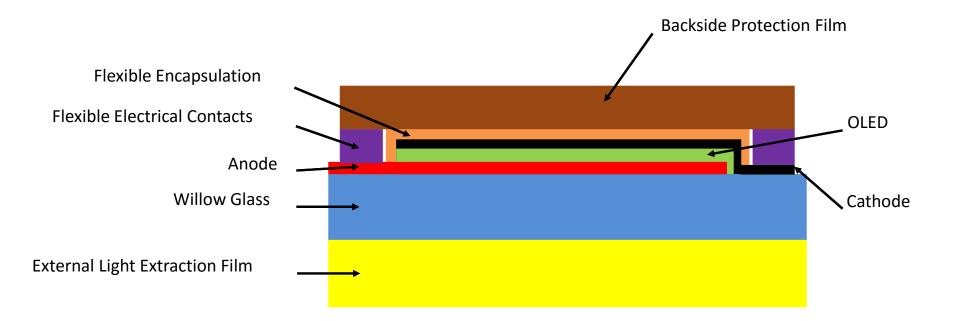
OLEDWorks/Corning approach

- Joint development program between OLEDWorks and Corning
 - Develop process and equipment technology needed to manufacture flexible OLED lighting panels on Willow glass
- Corning responsible for
 - Willow to Carrier bond/de-bond process and equipment
 - Integrated substrate materials, processes and equipment
 - Singulation process and equipment
- OLEDWorks responsible for
 - OLED fabrication
 - Encapsulation materials, processes and equipment
 - Panel finishing (EEL, electrical contacting, packaging and testing)

Initial issues

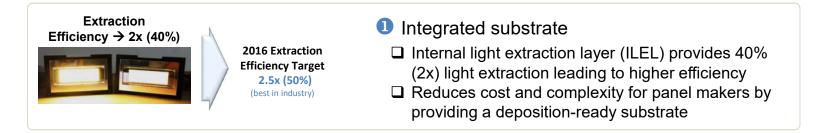

- 2-up 43mm x 102mm panel design, 102mm x 102mm substrate
- 0.1mm Willow bonded to 0.7mm carrier substrate by Corning
- OLED coating and encapsulation by OLEDWorks
- Poor and variable bonding quality with low debonding yield
- Able to demonstrate first working samples
- Poor overall yield breakage when flexed

OLEDWorks Panel


Current status

- Corning developed improved bonding process for Gen2/2.5 samples
- Corning developed improved singulation process
- OLEDWorks coated OLEDs onto Gen2 Willow on Carrier (65mm x 175mm panels)
- OLEDWorks developed improved processes and materials for flexible encapsulation, electrical connection, and packaging

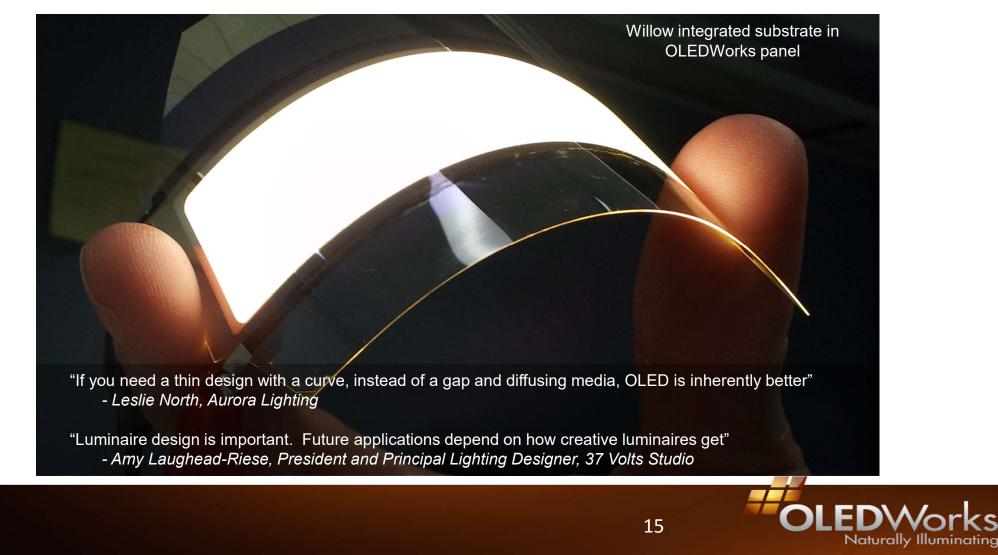
OLEDWorks Panel


Current structure

Flexible Integrated Substrate Value

Three key value propositions for Corning Willow Glass based Integrated substrate

2 R2R process capability → >30% cost reduction
 □ Drives faster market adoption by lowering cost
 □ Provides substrate with highest barrier property in a R2R format


Unlocks the conformability value element
 Conformable products are important to applications such as hospitality and transportation

14

Flexible Integrated Substrate Value

Flexible glass unlocks the conformability value element for OLED lighting

Summary

- Solid State Lighting is the Future
- Thinness, Lightness and Flexibility of OLED will be a Key Differentiator to LED
- Glass, Plastic and Metal Substrates each have Pros and Cons
- Willow Glass Enables Cost Effective Conformability
- OLEDWorks/Corning JDA is Developing the Processes and Equipment Needed to Manufacture Cost Effective Flexible OLEDs on Willow Glass

